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Space-Time Groups for the Lattice 1 
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In the assumption of a lattice theory in which the continuous limit is not taken, 
the metric of the discrete space-time should be invariant under integral transfor- 
mations. Based on local isomorphisms between real forms, a method is proposed 
in order to find the rational and integral elements of the pseudoorthogonal 
groups. Besides, the rational and integral trigonometric and hyperbolic functions 
are constructed on the lattice. 

1. ISOMORPHISM BETWEEN REAL FORMS 

According to Caf tan  theory, there are some real forms of simple Lie 
groups of low d imens iona l i ty  which are locally i somorphic  (Helgason,  1978). 
We describe them by the bi ject ion of R" onto a set of  matrices A. 

(i) SL(2, R) ~ S0(2 ,  1). Define a set of  2 • 2 real matrices A, by the 
condi t ions  A T = A, where A T means t ransposed.  The bi ject ion of an e lement  

(x0, xl, x2) of  R 3 onto a matrix A is the following: 

A = ( x o + x 2  Xl ) 
\ Xl No -- X2 

The t ransformat ions  A'  = SAS  T, with S e SL(2, ~) ,  map A into itself. Since 

- -  2 2 2 A' det A -  X o - X l - X z  = det 

this t rans format ion  induces  the desired isomorphism.  
(ii) SL(2, C ) ~ - S 0 ( 3 , 1 ) .  Define A, a 2 x 2  complex matrix, by the 

condi t ion  A + =  A, where A + means the Hermi t ian  conjugate matrix. The 
bi ject ion of (Xo, xl, x2, x3) in R 4 onto A is given by 

A = ( Xo + X3 11+ ix2~ 
\ xl -- ix2 Xo -- x3 / 

~The ideas in this paper were presented in the VI Seminar on Quantum Theory and the 
Structure of Space and Time, Tutzing, July 1984. 
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The transformation A ' =  SAS + with S~ SL(2, C) maps A into itself, as it is 
well known (Gel ' fand et al., 1963). Since 

2 2 2 x32=det A' det A = Xo-Xl  - x 2 -  

this t ransformation induces the mentioned isomorphism. 
(iii) Sp(4, ~) ~ S0(3,  2). The matrix A is a four-dimensional real matrix, 

satisfying ATj  = JA and Tr A- -0 ,  where 

is the unit matrix of  dimension 2. 
The bijection of an element (xa, x2, x3, x4, xs) of  R 5 onto A is given by 

A =  

11 X2~-X 3 0 X4-~X5\ 

o ] X 2  - -  X 3 - - X  1 - - X  4 - -  X 5  

0 x 4  - -  x 5  X 1 X 2  - -  x 3  / 
/ 

--Xa-~X s x2~-x  3 - -x  1 / 

The transformation A' = SAS -~ with S c Sp(4, R) maps A into itself, namely, 
A'rJ = JA', Tr A'  = 0. Since 

d e t A =  2 2 2 2 2 2 ( x ~ + x 2 - x 3 - x 4 + x s )  = det A', 

this t ransformation induces the desired isomorphism. 
(iv) Sp(1,1)~-SO(4,1).  A is defined by the four-dimensional 

complex matrix satisfying A r j = J A ,  A + K = K A ,  T r A = 0 ,  with K-~ 
d i ag (1 , -1 ,  1 , - 1 ) .  

The bijection of an element (x~, x2, x3, x4, x5) of  R s onto A is 

11 x2+ix3 0 x 4 ; i X s )  

A = - x 2 +  ix3 - x l  - x 4 -  ix5 
0 X4-- ix5 Xl --X2+ ix3l 

I 
--X4 ~- ixs 0 x2 + ix3 - X l  / 

Given an element S of  the group Sp(1, 1), that is to say, s T j s = J ,  
S+KS = K, the transformation A ' =  SAS -1 maps A into itself. Since 

det A = 2 2 2 2 ( X  1 - -  X 2 - -  X 3 - -  X 4 - -  X 2 )  2 = det A' 

this t ransformation induces the desired isomorphism. 
(v) SU(2, 2)~-S0(4 ,  2). A is defined by the four-dimensional complex 

matrix, satisfying A r = - A ,  A*I  = L,{, with fi,, the complex conjugate matrix 
of  A, A* the dual matrix of  A, namely, (A*)ab =�89 abcdA cd, and 
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The bijection o f  an element (xl, x2, x3, x4, xs, x6) o f  R 6 onto A is 

(Beckers et al., 1978) 

0 X1 q- ix2 X3 n t- ix4 X5 -t- ix  6 \ 
| 

- - X  1 -- ix  2 0 X 5 --  i x  6 - - X  3 q" ix4] 
A I 

- x 3 - i x  4 - 1 5 - t - i x  6 0 - x 1 0  ix2] 

- x 5  - ix 6 x3 - ix 4 Xl - ix 2 

The t ransformat ion A ' =  S A S  r, with S satisfying S + I S  = I, maps A into 

itself. Since 

det A = 2 2 2 2 A '  ( - - X  1 -- X2~I- X3-~ X4"~- X2"~- X 2) : det 

this t ransformat ion belongs also to S 0 ( 4 ,  2). 
(vi) S L ( 2 ,  Q) ~ S 0 ( 5 ,  1). Let A be a two-dimensional  quaternion matrix 

defined by A + = A. The bijection o f  an element (Xo, Xa, x2, x3, x4, x5) o f  ~ 6  

onto A is the following: 

[ X o -q-X 1 X 2 q- x3i q- x , j  + x sk~  

A = | \ x 2 _ x 3 i _ x 4 j _ x 5  k X o - X l  ~ / 

with (i, j ,  k) a basis for the quaternions. The t ransformat ion A ' =  S A S  +, 

with S ~ S L ( 2 ,  Q )  maps A into itself. Since 

det A = (Xo- Xl 2 -  2 2 2 2,2 A '  x2 - x3 - x 4 -  xs )  = det 

this t ransformat ion induces the desired i somorphism (Barut et al., 1965) 
(vii) S L ( 4 ,  R ) ~  S 0 ( 3 ,  3). A is defined by the four-dimensional  real 

matrix, satisfying A r = - A .  The bijection o f  an element (x l ,  x2, x3, x4, xs,  x6) 
o f  ~ 6  onto A is the following: 

0 - - X l ' ~ X  4 X2"[-X 5 X3Af-X6 

- - X  1 -- X 4 0 X3- -  X 6 - -X2-] -  X5 I 
/ j A = [ - x2  - x5  - x  3 -~- x 6 0 Xl 0 x 4  

\ - x 3  - x 6 x 2  - x 5 - x  1 -.1- x 4 

The t ransformat ion S ' =  S A S  r, with S~  SL(4, R) maps A into itself. Since 

det A 2 2 2 =(Xl_[_X2. .[_X 3 2 2 2x2 - x 4 -  x5 - x6) = det A '  

this t ransformat ion induces the desired isomorphism. 

2. R A T I O N A L  AND I N T E G R A L  REAL F O R M S  

Using the Cayley parametr izat ion o f  simple Lie groups we have 
described a method  to find all elements o f  a classical group with rational 
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matrix elements in the fundamental representation (Larente, 1974). In this 
method a matrix S of the unitary, orthogonal or symplectic group is 
decomposed in the following way: 

1 - H  ( l - H )  2 
S 

I + H  1 - H  2 

where H satisfies some particular conditions. S will be a rational form if 
the matrix elements of  H take only integer values. A rational form transforms 
vectors with rational components into other vectors with rational 
components. 

If we impose on H the condition to be a nilpotent matrix (Patera et 
al., 1980) H 2= 0, the last equation becomes 

S =  1 - 2 H  

with the property S k = 1 -2kH,  k integer. In this ease, if the matrix elements 
of H take only integer values then S will be an integral real form, which 
transforms vectors with (Gaussian) integer components into vectors with 
(Gaussian) integer components. In the ease of  an N-dimensional hypercubic 
lattice of  a Euclidean space R N these transformations map the lattice into 
itself. In the case of unimodular groups we can also decompose S = 1 + H, 
with H 2 = 0, since in this case det S = 1. We apply this method to the real 
forms of  the last section in order to find more easily the rational and integral 
forms of  the corresponding orthogonal groups. 

(i) SL(2, R): det S =  1; integral forms S =  1 +H ,  H 2 = 0 :  

a c 
H = ( 0 0  0 ) '  (0b 00)' ( - ~ - c ) "  a,b, cintegers 

(ii) SL(2, C) det S =  1; integral forms: S =  I + H ,  H 2 = 0 :  

o)(0 :) 
with a, b, c Gaussian integers. 

(iii) Sp(4, •), H T j + J H  = 0 

H =  a3 a4 b2 ba 
cl c2 - a l  -a3  

C 2 C3 - -  a 2 - -  a 4  

Rational forms: H with integer entries; integral forms: H 2 = 0 ,  such as 
al = a2 = - - a 3  = - - a 4  = 1; bl = b2  --- b3  = b4 = cl = c2 = c3 -~" 174 = 0. 

(iv) Sp(1, 1). HrJ+JH=O,  H + K + K H = O .  Rational forms: H with 
Gaussian integer numbers; integral forms: H 2 = 0, as in (iii). 
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(v) SU(2,2) H+I+IH=O; with the 
UIU -a, such that 
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unitary transformation I ~  

h =0, h;=h2 

corresponding to pure Lorentz, translation, and pure conformal transforma- 
tions (Mack, 1977). 

(vi) SL(2, Q): det S = 1. Integral forms: S = 1 + H, with H2=0;  for 
instance, 

H=(00 0) '  (0b 0 0 ) '  ( - ~ - ~ ) '  a,b,c~Q, integersquaternions 

(vii) SL(4, •), det S = 1. Integral forms: S = 1 + H, H 2 = 0, with integer 
matrix elements for H. 

(viii) For a pseudoorthogonal group SO(n, n) the Cayley parametriz- 
ation gives Hrl+ IH = 0 with 

( h i :  h2 ~. 
H . . . .  : ' "  ~r" , h T = - h 2 ,  hf  = -ha 

\ h3 . -h i ]  

Rational forms: H with integer elements; integral forms: H 2 = 0; for instance 

hi 2 = 0, h2 =- h3 = 0 ;  h 1 = h 3 = 0 ;  hi = h2 = 0 

Two observations can be made: First, by this method we do not get 
all the integral forms. To our knowledge, this problem has been solved for 
Lorentz transformations only (Schild, 1948). Secondly, from the rational 
real forms we can recover the continuous transformations, if we can take 
the n power of some element of the group 

[1-(1~re)H] ~ 
S -  

[1+(1~re)H] ~ 

which is still an element of the same group. (Here all the parameters are 
divided by m for convenience). Now, if we make m = n, and take the limit 
n -~ oo, we get 

S = e -2H 

we obtain the following integral transformation 
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3. RATIONAL TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 

We have defined (Lorente, 1974) the rational functions 

1[ z 2k ~2k,~ 1 {  Z 2k ~2k'~ 
c o s k a = ' ~ \ ' ~ + - ~ ] ,  s inka=2i \ l z l2k  iz--~] 

with z = m + hi, m, n, k integers, and a represent twice the area of the 
circular sector limited by the vectors Pk and Pk+l, (Pk =- Z2k/]Z[2k). In order 
to rationalize the argument also, we take a to be the length of the chord 
between Pk and Pk+l, namely, 

z 2 2 4n 2 
12o=-a 2= ~ - 1  =m2 + n 2 = 2 ( 1 - c o s a )  

Then the rational trigonometric functions satisfy the difference equations: 

A 2 cos ka �9 A 2 sin ka t-sin(k+ 1)a = 0 
~ a  2 + cos (k+  1)a =0,  Aa 2 

when we have written Aa 2 instead of a 2 for analogy with the differential 
equations. We have also defined the rational hyperbolic functions 

l [ u 2 k  a2k~ l [ u 2 k  ~2k~ 
cosh k/3 = ~ \~5 -~+  ]-~[2k], sinh k/3 

with u = m + nel, m, n, k integers, el 2 = 1. In order to rationalize the argument, 
we take /3 to be the length of the chord with negative sign between two 
vectors Pk and Pk+l (Pk=--U2k/[ulZk): 

u 2 12 m2 n24n2 I~-----/3 2= T ~ - I  = 2 ( 1 - c o s h  /3) 

Then, the difference equations take the form 

A 2 cosh k/3 A 2 sinh k/3 
A/32 cosh(k+  1)13 = 0, A/32 s inh(k+ 1)/3 = 0 

with &/32 instead of/32 for analogy with the differential equations. If we 
define 

exp k/3 ~ cosh kfl +sinh k/3 = (cosh/3 +sinh/3)k 

we get also A 2 exp k/3/A/32-exp(k+ 1)/3 = 0. 
We have defined also the generalized trigonometric functions (Lorente, 

1974) 

cos ka = -~ \ - ~  + ~ ], k integer 
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1 { W 2k w2k x 
sin, ka = ~ \ - ~  u, - u , - ~  ) , 

where 
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i = 1 , 2 , 3  

where 

u = m + rel + se2+ re3, 

= m - rel - s e  2 - te3, 

and el, e2, e3 satisfy eiej + eje~ = 3~;. 

/X2 sini ka 
Aa 2 { ' s i n i ( k + l ) a  =0  

For the generalized hyperbolic function we define 

l { u2k ~2k ~ 
cosh k/3 = ~ \-~5-~ + [-u--~12k ] , 

1 [ U 2k ~l 2k 
sinh, k/3 = ~ \-~i-~ e, - e,i-u-~ ) , 

k integer 

i = 1 , 2 , 3  

m, r, s, t integers 

[ul 2= ut7 

We take for the argument/3 the length of the chord with negative sign 
between the vectors Pk and Pk+x (Pk ==- u2k/lu[2k), namely, 

U2 12 r2-b s2-ff l2 
_/32___ lo 2 = ~ - ~ -  1 = - 4  m2_ r2_ s2_ t2 = 2(1 -cosh/3)  

Hence the difference equations become 

A2 cosh k/3 A2 sinh k/3 
A/32 cosh(k + 1)/3 = 0, A/32 sinh(k + 1)13 = 0 

(i = 1, 2, 3) with A/3 2 instead of/32. 

and the difference equations become 

//2 cos ka 
Aa 2 ~ -cos (k+ l ) a=0 ,  

i = 1, 2, 3 and Ac~: instead of a:.  

w =  m + nul + pu2 + qu3, m, n, p, q integers 

= m -  n u l - p u 2 - q u 3 ,  Iw] 2= WW 

are quaternion numbers. We rationalize the argument of these functions, 
as before, 

Wlw~: 2 =4m2m2+p2+q2 a2=120 = 1 +n2+p2 + q 2 = 2 ( 1 - c o s a )  
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As in the case of  rational forms, we can recover the continuous limit 
of  a rational function. Take the m power of  the exponential functions, for 
instance: 

exp rn~ - \-m--~-n/ - n / m ]  

which becomes e -2", when m ~ co. 

4. INTEGRAL T R I G O N O M E T R I C  AND H Y P E R B O L I C  FUNCTIONS 

With the help of  the integral real forms of the orthogonal group, we 
can construct the integral trigonometric functions. Let 

/ o o o . . .  o 1\ 
|~ o o . . .  oo~ 

A : / ~  : : : . .o .  ~ I 
~o o o . . .  o o / 
\ 0  0 0 " ' "  1 0 /  

be an N x N orthogonal matrix such that A N= 9. Consider the matricial 
function 

A(x)  --- A x, x integer 

with A(0) = A ( N )  = 9, satisfying the periodicity condition 

A ( x + N ) = A ( x )  

Using the matrix elements of  this function we define 

a•(x)=- [a(x)]o , i , j= 1, 2 , . . . ,  N 

From the properties of  A(x)  we derive immediately the following 
properties: 

N 

(i) ai j (x+y)= Y~ aim(X)amj(Y), x, yintegers  
r n = l  

N 

(ii) ~ a~(x) = 1, i= 1 , 2 , . . . ,  N 
j = l  

N 

(iii) Y~ a2(x)-- 1, j =  1 , 2 , . . . ,  N 
i=1 

(iv) a~(x+ N)=a i j ( x )  

We can construct also the difference operators 

Aa0(x) = ao(x + 1) - ao(x) ==- (E - 1)au(x ) 
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satisfying 

Ekao(x)  = ai, j+k(raodN)(X)  ENa~j(x) = ao(x ) 

We can also define the "Fourier" expansion of some periodic integral 
function, of period N, 

f ( x )  = f ( x  + N ) ,  x integer 

in terms of the integral trigonometric function, 

N 

f ( x )  = Y~ cjao(x) , (i fixed) 
j=�94 

With the help of the orthogonality condition 

N 

aO-(x )a ik (X  ) = t~jk , ( i  f i x e d )  
x - : l  

we obtain 

N 

Ck = • f (x )a ik (X) ,  (i fixed) 
x = l  

We can construct also the integral hyperbolic functions with the help 
of the vector 

V = V o +  v i e  I + ~2e2 + v 3 e  3 

w h e r e  = 1. H e n c e  

cosh k/3 = v 2k + v -2k, sinhi k/3 = v2%i - eiv-2k, i = 1, 2, 3 

k integer, and the argument /3 defined as the length of the chord, with 
negative sign, between the vectors v 2k+2 and v 2k, 

-1322 Ig = Iv 2 -  112 = -4V2o 

Therefore /3 =2Vo is an integer number. The integral hyperbolic 
functions satisfy 

A 21 cosh k/3 -/32t cosh(k+ 1) = 0 

and for k, negative, k = - 1 ,  we obtain 

A2l cosh k/3 =/32! 

which can be used for the expansion of an integral function in terms of the 
integral hyperbolic functions. 
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5. SOME COMMENTS 

We have presented some mathematical aspects of a physical model 
based on the hypothesis of a discrete space and time. The philosophical 
foundations for this model were presented elsewhere (Lorente 1983). From 
different approaches this hypothesis has become very appealing: 

(i) In Tutzing seminars, the hypothesis of simple alternatives, elemen- 
tary processes, monads, and similar ones, require some discrete structure 
for the configuration or momentum space (Castell et al., 1975, 1977, 1979, 
1981, 1983). 

(ii) In relational theories of space and time, the metric is a consequence 
of the intrinsic properties of the structure of space and time, as it was 
suggested by Riemann in the last century and has been proposed recently 
(Gruenbaum, 1977). 

(iii) In current models of gauge theories on the lattice, although it is 
considered the discretization of the space as an auxiliary tool, it has been 
suggested that the continuous limit is only an approximation and that the 
real world is discrete (Klapunovsky, 1985). 

(iv) One of the most difficult setbacks of discrete models is the invari- 
ance of the lattice under the space-time groups. We have found a large class 
of subgroups of the real forms that keep the lattice invariant. In the case 
of the Lorentz group this method was proposed by the author (Lorente, 
1974). 
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