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Space-Time Groups for the Lattice'
Miguel Lorente’

Received April 26, 1985

In the assumption of a lattice theory in which the continuous limit is not taken,
the metric of the discrete space-time should be invariant under integral transfor-
mations. Based on local isomorphisms between real forms, a method is proposed
in order to find the rational and integral elements of the pseudoorthogonal
groups. Besides, the rational and integral trigonometric and hyperbolic functions
are constructed on the lattice.

1. ISOMORPHISM BETWEEN REAL FORMS

According to Cartan theory, there are some real forms of simple Lie
groups of low dimensionality which are locally isomorphic (Helgason, 1978).
We describe them by the bijection of R" onto a set of matrices A.

(i) SL(2,R)=SO(2,1). Define a set of 2x2 real matrices A, by the
conditions A” = A, where A” means transposed. The bijection of an element
(xo, X1, X,) of R® onto a matrix A is the following:

X+
A=< o Xy Xy )
xl x —X2
The transformations A’= SAS”, with S e SL(2, R), map A into itself. Since
det A=x3—x3—xi=det A’
this transformation induces the de51red isomorphism.
(ii) SL(2,C)=~S0(3,1). Define A, a 2x2 complex matrix, by the
condition A" = A, where A" means the Hermitian conjugate matrix. The
bijection of (xq, X, X,, x;) in R* onto A is given by

XotX; X+ix
A=< 0 3 1 2)

X —iX, Xg—Xs
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The transformation A’= SAS™ with S SL(2, C) maps A into itself, as it is
well known (Gel’fand et al., 1963). Since

det A=xi—x?—x3—x2=det A’

this transformation induces the mentioned isomorphism.
(iii) Sp(4, R) = SO(3, 2). The matrix A is a four-dimensional real matrix,
satisfying A”J = JA and Tr A =0, where

01
=(:55)

1 is the unit matrix of dimension 2.
The bijection of an element (x,, X, X3, X4, X5) of R®> onto A is given by

X, x2+X3 0 X4+x5
xz_x:; _xl —X4—x5 O
A=
O X4_X5 x1 xz_x3
— X4+ X5 Xyt X3 —X;

The transformation A’ = SAS™! with S € Sp(4, R) maps A into itself, namely,
ATJ=JA', Tr A’=0. Since

det A= (xI+x}—x3-x3+x3)*=det A,
this transformation induces the desired isomorphism.

(iv) Sp(1,1)=80(4,1). A is defined by the four-dimensional
complex matrix satisfying A"J=JA, A*K=KA, TrA=0, with K=
diag(1, —1,1, —1). A

The bijection of an element (x,, x,, X5, X4, Xs) of R® onto A is

X X, +ix; 0 X4t 0Xs
A= —x,+ ix; —X; —X4— X5 0
a 0 X4— iXs X, —X,+ x5
— X4+ ixs 0 X, +ixs —-X;

Given an element S of the group Sp(1, 1), that is to say, S'JS=1J,
S*KS = K, the transformation A’= SAS™" maps A into itself. Since

det A=(x}—x2—x2—x3—x3)’=det A’

this transformation induces the desired isomorphism.

(v) SU(2,2)=S80(4,2). A is defined by the four-dimensional complex
matrix, satisfying A” = — A, A*I = IA, with A, the complex conjugate matrix
of A, A" the dual matrix of A, namely, (A*)., =3¢ 1esA®, and
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The bijection of an element (x;, X5, X3, X4, X5, Xs) Of R® onto A is
(Beckers et al., 1978)

0 X, tix, Xztixy Xxs+ixg
A= —X;—iX, 0 Xs—ixg —X3t+ixy
B —X;—ixys —Xs+ixg 0 —X, + ix,
—X5—iXg X3~ X4 X IXp 0

The transformation A’ = SAS”, with S satisfying STIS =1, maps A into
itself. Since

det A= (=x?—x3+x3+x5+x3+x7)=det A’

this transformation belongs also to SO(4, 2).

(vi) SL(2, Q) =~ SO(5, 1). Let A be atwo-dimensional quaternion matrix
defined by A* = A. The bijection of an element (x, X, X5, X3, X4, X5) of R®
onto A is the following:

A—( Xot X, x2+x3i+x4j+x5k)
xz"‘X3i_X4j_xSk xO_xl

with (i, j, k) a basis for the quaternions. The transformation A’'= SAS™,
with S< SL(2, Q) maps A into itself. Since

det A= (xo—x}—x3—x3—x3—x3)*=det A’

this transformation induces the desired isomorphism (Barut et al., 1965)

(vii) SL(4,R)=S0(3,3). A is defined by the four-dimensional real
matrix, satisfying A” = — A. The bijection of an element (x,, X5, X3, X4, Xs, Xc)
of RS onto A is the following:

0 —X; X, Xyt Xs X3+ X

A= —X1— Xy 0 X3—Xg —XotXs

B —X,—Xs —X3t X 0 X, Xy
—X3—Xg Xp—Xs —X;+tX4 0

The transformation S'= SAS”, with Se SL(4, R) maps A into itself. Since
det A=(x3+xI+x3—x5—x:—x2)*=det A’

this transformation induces the desired isomorphism.

2. RATIONAL AND INTEGRAL REAL FORMS

Using the Cayley parametrization of simple Lie groups we have
described a method to find all elements of a classical group with rational
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matrix elements in the fundamental representation (Lerente, 1974). In this
method a matrix § of the unitary, orthogonal or symplectic group is
decomposed in the following way:

_1-H (1-HY

1+H 1-H?
where H satisfies some particular conditions. S will be a rational form if
the matrix elements of H take only integer values. A rational form transforms
vectors with rational components into other vectors with rational
components.

If we impose on H the condition to be a nilpotent matrix (Patera et
al., 1980) H?=0, the last equation becomes

S§S=1-2H

with the property S* =1 —2kH, k integer. In this case, if the matrix elements
of H take only integer values then S will be an integral real form, which
transforms vectors with (Gaussian) integer components into vectors with
(Gaussian) integer components. In the case of an N-dimensional hypercubic
lattice of a Euclidean space R™ these transformations map the lattice into
itself. In the case of unimodular groups we can also decompose S=1+H,
with H>=0, since in this case det S=1. We apply this method to the real
forms of the last section in order to find more easily the rational and integral
forms of the corresponding orthogonal groups.
(i) SL(2, R): det S=1; integral forms S=1+H, H*=0:

0 a 0 0 c o '
H_(O 0)’ <b 0>’ (—c —c)’ a, b, c integers

(ii) SL(2,C) det S=1; integral forms: S=1+H, H>*=0:

(9 () ()

with a, b, ¢ Gaussian integers.
(iii) Sp(4,R), H'J+JH =0
a a b b,
as; a; b, b

G 6 —a4 —a3
Cy Cy —a, —ay
Rational forms: H with integer entries; integral forms: H>=0, such as
A=Ay = —A3=—04~ 1; b1=b2=b3=b4=C1=C2=C3:C4=O.
(iv) Sp(1,1). H'J+JH =0, H"K + KH =0. Rational forms: H with
Gaussian integer numbers; integral forms: H>=0, as in (iii).
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(v) SU(2,2) H'I+IH=0; with the unitary transformation I-
UIU™, such that
01
I =
<ﬂ 0)

we obtain the following integral transformation

h, 0 h2> (0 O> R .
- = = W=0. hi=h
H ( —hT)’ H (0 0/’ H h, 0) 1=9, 2 2

corresponding to pure Lorentz, translation, and pure conformal transforma-
tions (Mack, 1977).

(vi) SL(2, Q): det S=1. Integral forms: S=1+ H, with H*>=0; for
instance,

H_(O a (0 0) ( ¢ c) a, b, c€ Q, integers quaternions
=\o o) b o) — —¢) > 0, y gers q

(vii) SL(4,R), det S = 1. Integral forms: S =1+ H, H* = 0, with integer
matrix elements for H.

(viii) For a pseudoorthogonal group SO(n, n) the Cayley parametriz-
ation gives H I+ IH =0 with

Rational forms: H with integer elements; integral forms: H> = 0; for instance
h%':O, h2=h3=0; h1=h3=0; h1=h2=0

Two observations can be made: First, by this method we do not get
all the integral forms. To our knowledge, this problem has been solved for
Lorentz transformations only (Schild, 1948). Secondly, from the rational
real forms we can recover the continuous transformations, if we can take
the n power of some element of the group

_[1-/myHY"

ST r/m AT

which is still an element of the same group. (Here all the parameters are
divided by m for convenience). Now, if we make m = n, and take the limit
n -0, we get

S= e—ZH
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3. RATIONAL TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS
We have defined (Lorente, 1974) the rational functions

1 2k =2k 1 2k =2k
cos ka=—<z—+—z——), sin ka=—,<—z— —z~)
2 2i

Izlzk |Z|2k |lek —1Z|2k

with z=m+ni, m, n, k integers, and a represent twice the area of the
circular sector limited by the vectors P and P, (P. = z?*/|z[**). In order
to rationalize the argument also, we take @ to be the length of the chord
between P, and Py.,, namely,

2 2

2
Peg?e __d4n
o= = "~ m?2+n?

=2(1—cos a)

-1
|z[?
Then the rational trigonometric functions satisfy the difference equations:

A? cos ki A*sinka |
ﬁg+cos(k+1)a =0, %2-3+sm(k+l)a =(
when we have written Aa” instead of «? for analogy with the differential
equations. We have also defined the rational hyperbolic functions

1 qu azk . 1 u2k aZk
cosh kﬁ =—2—('_u’—zz+|'t—ll2_k), Slnh kﬁ =5<—-P(-—W>el

with u = m + ne;, m, n, k integers, e; = 1. In order to rationalize the argument,
we take B to be the length of the chord with negative sign between two
vectors P, and P, (P.=u**/|ul**):

2
4n?

>
= ——r;-i_—nz=2(1 —cosh B)

P~

B=-p-

Then, the difference equations take the form

A’ cosh kB A’ sinh k8

A —cosh(k+1)B =0, Y

sinh(k+1)8=0

with AB? instead of B” for analogy with the differential equations. If we
define

exp kB = cosh kB +sinh kB = (cosh 8 +sinh )"

we get also A% exp kB/AB*—exp(k+1)B=0.

~ We have defined also the generalized trigonometric functions (Lorente,
1974)
1 ( wzk Wzk

cos ka =5 W+W>’ k integer



Space-Time Groups for the Lattice 61
1 w2k Wik .
sin; ka = | |2k W,; , i=1,2,3
where
=m+ nu, + pu,+ qus, m, n, p, q integers
W=m-—nu,—pu,—qus,  |w]'=ww

are quaternion numbers. We rationalize the argument of these functions,
as before,

2 2

v
[wf?

and the difference equations become

2 2 2
m°+p°+
1 =4————7F— 2‘0 2q 5=2(1—cos a)

m°+n°+p°+gq

a’=05=

A? cos ka A% sin, ka

Ao +cos(k+1)a =0, Ao? +sin;(k+1)a=0
a a

i=1,2,3 and Aa” instead of a’.
For the generalized hyperbolic function we define

2k =2k
u

cosh kB = (lu|2k+| ‘Zk), k integer

2k ~2k
sinh; kB = (\ulz,c e — e,~I~:—|2—k>, i=1,2,3

where

u=m-+re +se,+te,, m, 1, s, t integers

<)

=m—re,—se,—tes, |ul’=uii

and e, e,, e; satisfy e+ eje; = §;;
We take for the argument 8 the length of the chord with negative sign
between the vectors Py and Pyy; (P, = u**/|uf**), namely,

2 2

WP

Hence the difference equations become

_H_4__l;;t£~j;£___ 2(1 h )
B m*—ri—s* B cosh B

-B _[2

A? cosh kﬁ-—cosh(k+ 18 =0, A?sinh kB

AB? Ag?
(i=1,2,3) with AB? instead of B~

—sinh(k+1)8 =0
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As in the case of rational forms, we can recover the continuous limit
of a rational function. Take the m power of the exponential functions, for

instance:
ex mﬁ_(m+n>'"_(1+n/m>"'
P m-n) 1-n/m

2

which becomes ¢ “", when m > .

4. INTEGRAL TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

With the help of the integral real forms of the orthogonal group, we
can construct the integral trigonometric functions. Let

0 00 01
1 00 0
A=|0 1 0 0 0
AR RSO AR
0 0 0 1 0

be an N x N orthogonal matrix such that AY =1. Consider the matricial
function

A(x)= A", x integer
with A(0) = A(N) =1, satisfying the periodicity condition
A(x+ N)=A(x)
Using the matrix elements of this function we define
a;(x)=[A(X)];, 4j=1,2,...,N
From the properties of A(x) we derive immediately the following

properties:

N
(1) alj(X+y)= z aim(x)amj(y)a xyyintegers
m=1
N
(i) Y aj(x)=1, i=1,2,...,N
j=1

N
(i) Y aj(x)=1, j=1,2,...,N
i=1

(iv) a;(x+N)=a;(x)
We can construct also the difference operators

Aa;(x) = a;(x+1)~a;(x)=(E —1)ay(x)
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satisfying
E*a;(x) = @ jormoany(X)  ENay(x)=ay(x)

We can also define the “Fourier” expansion of some periodic integral
function, of period N,

f(x)=f(x+N), x integer

in terms of the integral trigonometric function,
N
fx)=1% Cjaij(x), (i fixed)
j=1
With the help of the orthogonality condition
N
Y ai(x)ag(x) =, (i fixed)
x=1
we obtain

6= 3 e, (ifired
We can construct also the integral hyperbolic functions with the help
of the vector
V=09t vt v6, 1+ 505
where v3+ v3+v2—v3=1. Hence
cosh kB =v +v"%*  sinh, kB = v**¢,— ev 2, i=1,2,3

k integer, and the argument B8 defined as the length of the chord, with
negative sign, between the vectors v***2 and v?*

~B == v~ 1P = ~403

Therefore B =2v, is an integer number. The integral hyperbolic
functions satisfy

A* cosh kB — B* cosh(k+1) =0
and for k, negative, k = —1, we obtain
A* cosh kB = B*

which can be used for the expansion of an integral function in terms of the
integral hyperbolic functions.
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5. SOME COMMENTS

We have presented some mathematical aspects of a physical model
based on the hypothesis of a discrete space and time. The philosophical
foundations for this model were presented elsewhere (Lorente 1983). From
different approaches this hypothesis has become very appealing:

(i) In Tutzing seminars, the hypothesis of simple alternatives, elemen-
tary processes, monads, and similar ones, require some discrete structure
for the configuration or momentum space (Castell et al., 1975, 1977, 1979,
1981, 1983).

(ii) Inrelational theories of space and time, the metric is a consequence
of the intrinsic properties of the structure of space and time, as it was
suggested by Riemann in the last century and has been proposed recently
(Gruenbaum, 1977).

(iii) In current models of gauge theories on the lattice, although it is
considered the discretization of the space as an auxiliary tool, it has been
suggested that the continuous limit is only an approximation and that the
real world is discrete (Klapunovsky, 1985).

(iv) One of the most difficult setbacks of discrete models is the invari-
ance of the lattice under the space-time groups. We have found a large class
of subgroups of the real forms that keep the lattice invariant. In the case
of the Lorentz group this method was proposed by the author (Lorente,
1974).
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